A Novel Approach for Measuring Gas Solubility in Liquids Using a TubeinTube Membrane Contactor

نویسندگان

  • Gaowei Wu
  • Enhong Cao
  • Simon Kuhn
  • Asterios Gavriilidis
چکیده

A novel approach using a semipermeable Teflon AF-2400 tube-in-tube membrane contactor was developed for the measurement of gas solubility in organic solvents. This membrane ensures gas saturation of liquids in continuous flow at a specific pressure and temperature. After liquid decompression, the amount of gas outgassed was measured with a bubble meter and used for solubility calculation. The proposed method was applied to the measurement of oxygen solubility in toluene and benzyl alcohol. Validation experiments were initially performed by comparing the obtained oxygen solubility in toluene with literature data. With higher temperature, the solubility of oxygen in benzyl alcohol was found to increase, indicating that the oxygen-dissolving process is endothermic. Finally, an empirical correlation of Henry’s law constant as a function of temperature was determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlating Physicochemical Properties of Commercial Membranes with CO2 Absorption Performance in Gas-Liquid Membrane Contactor

The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes wer...

متن کامل

Amine Based CO2 Absorption in Membrane Contactor Using Polyvinyl Pyrrolidone-modified Polysulfone Flat Sheet Membrane: Experimental Study and Mass Transfer Resistance Analysis

Membrane contactor using amine based absorbents is an efficient technology for CO2 separation from gaseous mixtures. A novel porous polysulfone (PSF) flat membrane was prepared via non-solvent phase inversion method. The PSF membrane was modified by adding polyvinyl pyrrolidone (PVP) to the dope solution. The fabricated membrane was used in the serpentine flow field contactor module for CO2 abs...

متن کامل

Modeling and Experimental Study of Carbon Dioxide Absorption in a Flat Sheet Membrane Contactor

comIn the present study, CO2 removal from natural gas stream has been studied using a flat sheet membrane contactor. A three dimensional mathematical model is developed to describe the process. The model considers the transport of a gas mixture containing carbon dioxide and methane through a flat sheet membrane contactor module. The model is based on the non-wetted mode of operation, in which t...

متن کامل

Polyvinylidene Fluoride Hollow Fiber Membrane Contactor Incorporating Surface Modifying Macromolecule for Carbon Dioxide Stripping from Water

Porous surface modified polyvinylidene ï‌‚uoride (PVDF) hollow fiber membranes are fabricated through a dry-wet phased inversion process. Surface modifying macromolecules (SMM) (1 wt. %) are used as additives in the spinning dope. The performance of the surface modified membrane in contactor application for CO2 stripping from water is assessed through the fabricated gas–liquid membrane contacto...

متن کامل

Fabrication and Characterization of Polyetherimide Hollow Fiber Membrane Contactor for Carbon Dioxide Stripping from Monoethanolamine Solution

In this research, process asymmetric polyetherimide hollow fiber membranes using ethanol (0, 2 and 4 wt%) as non-solvent additive in the polymer dope via phase inversion method were fabricated. Aqueous solution of 1-methyl-2-pyrrolidine (NMP) (90%) was applied as a bore fluid to avoid inner skin layer formation and water was used as the external coagulant. The morphology of fabricated membranes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016